Non-genetic factors influence severity of episodic ataxia type 1 in monozygotic twins

Tracey D. Graves MRCP1*, Sanjeev Rajakulendran MRCP1*, Sameer M. Zuberi MRCPCH2, Huw R. Morris FRCP3, Stephanie Schorge PhD1, Michael G. Hanna FRCP1 and Dimitri M. Kullmann FMedSci1

1MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
2Fraser of Allander Neurosciences Unit, Royal Hospital for Sick Children, Yorkhill, Glasgow, G3 8SJ, United Kingdom
3MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, CF14 4XN, United Kingdom

* These authors contributed equally to the manuscript

Correspondence to D.M. Kullmann, UCL Institute of Neurology, Queen Square, London, WC1N 3BG (d.kullmann@ion.ucl.ac.uk)

MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
Statement of Financial Disclosure

T D Graves reports no disclosures
S Rajakulendran reports no disclosures
S M Zuberi reports no disclosures
H R Morris reports no disclosures
S Schorge reports no disclosures
M G Hanna reports no disclosures
D M Kullmann reports no disclosures

Funding

SR held a Clinical Training Fellowship from the Wellcome Trust. TDG held an Action Medical Research Training Fellowship and was previously funded by the Guarantors of Brain. TDG, SR and MGH belong to the Consortium for Clinical Investigation of Neurological Channelopathies (CINCH) supported by NIH RU54 RR019482 (NINDS/ORD). SS is funded by the Worshipful Company of Pewterers and a grant from the Medical Research Council. DMK and MGH are funded by grants from the Medical Research Council and Action Medical Research. This work was undertaken at UCLH/UCL and was supported by the Department of Health NIHR Biomedical Research Centres funding scheme.
Abstract

Objective: Episodic Ataxia type 1 (EA1) is a monogenic channelopathy caused by mutations of the potassium channel gene \textit{KCNA1}. Affected individuals carrying the same mutation can exhibit considerable variability in the severity of ataxia, neuromyotonia and other associated features. We investigated the phenotypic heterogeneity of EA1 in two sets of identical twins to determine the contribution of environmental factors to disease severity. One of the mutations was also found in a distantly related family providing evidence of the influence of genetic background on the EA1 phenotype.

Methods: We evaluated three families with an EA1 phenotype, two of which included monozygotic twins. We sequenced the \textit{KCNA1} gene and studied the biophysical consequences of the mutations in HEK cells.

Results: We identified a new \textit{KCNA1} mutation in each pair of twins. Both pairs reported striking differences in the clinical severity of symptoms. The F414S mutation identified in one set of twins also occurred in a distantly related family in which seizures complicated the EA1 phenotype. The other twins had an R307C mutation, the first EA1 mutation to affect an arginine residue in the voltage-sensor domain. Both mutants when expressed exerted a dominant-negative effect on wild type channels.

Conclusion: These results broaden the range of \textit{KCNA1} mutations and reveal an unexpectedly large contribution of non-genetic factors to phenotypic variability in EA1. The occurrence of epilepsy in one of two families with the F414S mutation suggests an interplay of \textit{KCNA1} with other genetic factors.
Introduction

Episodic ataxia type 1 (EA1) is characterized by brief paroxysms of ataxia and interictal myokymia \(^1\). It is caused by heterozygous point mutations in the voltage-gated Kv1.1 potassium channel \(\alpha\)-subunit, encoded by \(KCNA1\) \(^2\). Scrutiny of genetically confirmed kindreds reveals considerable phenotypic heterogeneity with respect to severity of ataxia and presence of additional features such as epilepsy \(^1\). Hitherto, attempts to account for phenotypic variability have concentrated on differences among distinct \(KCNA1\) mutations with respect to their functional consequences when expressed \textit{in vitro}. All EA1 mutations cause a loss of function, typically measured as a decrease in current density \(^1\). Mutations associated with a severe phenotype have a dominant negative effect on wild type channel function \(^3,4,5\). A recent study in neurons has shown that \(KCNA1\) mutations differentially affect action potential generation and neurotransmitter release \(^3\). Despite attempts at correlating phenotypic severity with functional studies, even within affected kindreds there is frequently considerable heterogeneity in symptom severity. Monozygotic twins potentially provide an insight into the relative importance of modifier genes compared to lifestyle or environmental factors. Here we report two families where EA1 affects identical twins, and observe a surprising degree of discordance in symptom severity.

Materials and methods: See E-methods

\textit{Standard Protocol Approvals, Registrations, and Patient Consents:\ }Ethical approval was obtained from the UCLH ethics committee. Written informed consent was obtained from all patients participating in the study. Consent-to-disclose was obtained for the video.

Results
Clinical: Family A - Affected members of this pedigree (Figure 1A) show a classical EA1 phenotype (summarized in Table 1). In the more severe cases, dysarthria and gait disturbance are also present during an attack. Attack precipitants include sudden movements or fever, although several patients have also had unprovoked attacks. The proband, who experiences up to 30 attacks a day, is the most severely affected, and has experienced no benefit from carbamazepine, in contrast to her mother, who reports a marked effect on attack frequency. Interictal myokymia has been observed in affected individuals. The proband’s mother (II 4) has an identical twin (II 6; Figure 1A). Although case II 4 is not available for objective evaluation, she and her twin sister report that their symptoms emerged at similar ages. However, their phenotypes differ with respect to attack frequency, duration and severity. Indeed, while case II 4 has been maintained on carbamazepine, her identical sister, II 6 has not required medication.

Family B – Another family with EA1 from the same geographical region is included here because the same mutation was identified. From six months to five years of age the proband had brief focal epileptic seizures with impairment of awareness and apnoea. At five he developed episodic ataxia. In addition, he has secondary generalized seizures once per month; these were not controlled by carbamazepine or lamotrigine, but have responded to acetazolamide, which has also reduced the frequency of episodic ataxia attacks. His father, paternal uncle and paternal grandmother all have episodic ataxia and interictal myokymia.

Family C - Affected members of this pedigree have classical EA1 attacks (Figure 2C, summarized in Table 1). The proband is one of confirmed identical twins (IV 1 and IV 2, Figure 2C). His attacks began at the age of six and last up to ten minutes. They consist of dizziness, imbalance, weakness, blurred vision, slurred speech, myokymia and upper limb incoordination. His brother has less frequent, briefer and less disabling attacks, which are associated with
headache, vertigo and nausea. The proband’s mother (III 2) has a progressive interictal cerebellar syndrome, manifest as ataxia and dysarthria (see E-video).

Genetics: A novel T to C substitution was identified at position nt1241 of *KCNA1* (Figure 1B) in families A and B. This was not present in 128 control chromosomes. It leads to the substitution of a conserved phenylalanine (Figure 2E) by serine at amino acid 414 (F414S) in the S6 transmembrane segment of the channel. Another mutation affecting the same residue (F414C) was recently identified in a large EA1 kindred 4. Haplotype analysis between members of families A and B demonstrated that all except one marker was shared by six individuals (Figure E-1), covering a chromosomal region of approximately 5.77 Mb. These results suggest a shared ancestral haplotype on which the mutation has arisen and that the two families are related.

A novel T to C substitution was identified at position nt919 of *KCNA1* in family C (Figure 2D). This was not present in 228 control chromosomes, and leads to the substitution of a highly conserved arginine (Figure 2F), by cysteine at position 307 in the S4 segment of the channel (R307C).

Functional characterization: When expressed in HEK cells, both F414S and R307C were detected with anti-KV1.1 antibodies with similar distribution to WT KV1.1 suggesting the mutant subunits were present in the cells (Figure E-2). However, no potassium currents could be detected in cells transfected with only mutant subunits (Figure 2) suggesting that they not functional. Coexpression of each mutant with WT KV1.1, produced potassium currents with a markedly reduced maximum current density compared to WT Kv1.1 channels alone (WT, 86.8 ± 7.5 pA/pF, n=7; WT:R307C, 22.1 ± 5.4 pA/pF, n=7, p=0.003; WT:F414S, 6.9 ± 0.9 pA/pF, n=7, p=0.002). Both mutants also conferred a significant positive shift in the V_{1/2MAX} of the voltage dependence of activation of KV1.1 when coexpressed with WT channels (WT: V_{1/2MAX} = -41.9 ±
0.5; WT:R307C, $V_{1/2\text{MAX}} = -30.5 \pm 0.9$, $p<0.0001$; WT:F414S, $V_{1/2\text{MAX}} = 27.0 \pm 1.4$, $p<0.0001$).

These findings are consistent with both mutants exerting a dominant-negative effect on WT subunits.

Discussion

Both mutations were identified in families with symptoms that fall within the spectrum previously reported for *KCNA1* mutations. Carbamazepine, where tested, was not effective in all individuals. The occurrence of epilepsy in the proband of family B adds to the list of mutations associated with EA1 and epilepsy. The absence of epilepsy in family A, who are related to family B, is consistent with a role for other genes interacting with *KCNA1* to determine seizure risk. An unusual feature of the R307C mutation identified in family C is the progressive ataxia in the proband’s mother, which has not previously been reported in EA1.

Several observations point to causal roles for the F414S and R307C mutations in the disease. Firstly, they lead to radical amino acid substitutions in the ion-conducting pore and voltage sensor, respectively. Second, the mutations were not detected in control chromosomes. Third, both the nucleotides and the amino acids are highly conserved through evolution. Fourth, functional expression revealed loss of function with a dominant-negative effect when coexpressed with wild type channels, consistent with previous functional studies on EA1 mutations. And finally, the residue mutated in families A and B is also affected in another family with EA1, who carry the F414C mutation, which decreases potassium currents.

Both sets of identical twins reported unexpectedly large differences in severity and frequency of EA attacks. In both sets of twins one has sought treatment, whereas the less severely affected twin
has not required medication. The self-reported variability was as large among the identical twins as among other affected members of each family.

Few channelopathies have been studied in twins. One pair of identical twins with severe myoclonic epilepsy of infancy sharing an \textit{SCN}A1 mutation was reported to be concordant for phenotype 5. However, discordant monozygotic twin pairs have also been reported in familial long QT syndrome 6 and in episodic ataxia type 2 7. Although the numbers remain small, these findings suggest that symptom heterogeneity among individuals harboring the same mutation reflects the interplay not only of modifier genes, but also of non-genetic factors.

\textbf{Acknowledgements}

We are grateful to M. Sweeney for carrying out the monozygosity testing and to V. Gibbons and P. Sleiman for technical assistance.
<table>
<thead>
<tr>
<th>Family</th>
<th>Pedigree no.</th>
<th>Age of onset</th>
<th>Age when seen</th>
<th>Symptoms</th>
<th>Triggers</th>
<th>Frequency</th>
<th>Length of attack</th>
<th>Neuro-myotonia</th>
<th>Response to CBZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A I I 1*</td>
<td>12</td>
<td>42</td>
<td>Dizziness, slurred speech, unsteady gait</td>
<td>Paroxysmal or on sudden movement</td>
<td>Daily, now weekly</td>
<td>Secs to mins, longest 10 mins</td>
<td>No</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>A II 4 twin</td>
<td>14</td>
<td>N/A</td>
<td>Dizziness, slurred speech, nausea, unsteady gait, in-coordination of hands, weakness, myokymia</td>
<td>Paroxysmal or on sudden movement, stress, startle, fever</td>
<td>Daily, weekly on CBZ</td>
<td>10-15 mins</td>
<td>No</td>
<td>Effective</td>
<td></td>
</tr>
<tr>
<td>A II 6* twin</td>
<td>16</td>
<td>39</td>
<td>Dizziness, slurred speech, in-coordination of hands, tremors</td>
<td>Sudden movement, startle, stress, fever, sleep</td>
<td>Weekly</td>
<td>5-10 mins</td>
<td>No</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>A II 9*</td>
<td>15</td>
<td>36</td>
<td>Dizziness, slurred speech, vertigo, nausea, unsteady gait, headache, in-coordination of hands, weakness, myokymia</td>
<td>Sudden movement, startle, stress, alcohol, menstruation, fever</td>
<td>Several per week</td>
<td>Secs to 10 mins</td>
<td>No</td>
<td>Ineffective</td>
<td></td>
</tr>
<tr>
<td>A II 10*</td>
<td>12</td>
<td>35</td>
<td>Dizziness, slurred speech, vertigo, tremor, weakness, myokymia, nausea, unsteady gait</td>
<td>Paroxysmal or on sudden movement, startle, fever, stress, alcohol, pregnancy</td>
<td>2 per week</td>
<td>Secs to mins</td>
<td>No</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>A II 12</td>
<td>Childhood</td>
<td>N/A</td>
<td>Dizziness</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>A III 3 Proband*</td>
<td>12</td>
<td>16</td>
<td>Dizziness, slurred speech, nausea, unsteady gait, in-coordination of hands, weakness, myokymia</td>
<td>Paroxysmal or on sudden movement, fever, startle, stress, alcohol</td>
<td>Daily, up to 30/day</td>
<td>Secs to 20 mins</td>
<td>No</td>
<td>Ineffective (400mg)</td>
<td></td>
</tr>
<tr>
<td>A III 5</td>
<td>Childhood</td>
<td>N/A</td>
<td>Dizziness</td>
<td>Only when systemically unwell</td>
<td>N/A</td>
<td>Secs</td>
<td>No</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>A III 8</td>
<td>Unknown</td>
<td>N/A</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>A III 13*</td>
<td>Infancy</td>
<td>14</td>
<td>Dizziness, slurred speech, unsteady gait</td>
<td>Paroxysmal or on sudden movement, fever</td>
<td>Daily, almost continuous during intercurrent illness</td>
<td>Up to two mins</td>
<td>Yes</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>A III 16</td>
<td>4-5 years</td>
<td>N/A</td>
<td>Dizziness</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>B III 2*</td>
<td>5 years</td>
<td>50</td>
<td>Imbalance, weakness, blurred vision, slurred speech, myokymia, in-coordination of hands, vertigo, headache, nausea, tremor</td>
<td>Startle, fever, alcohol, caffeine, stress, sudden movement, exercise, heat, menstruation</td>
<td>Daily</td>
<td>Secs to 10 mins</td>
<td>yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>B IV 1* twin</td>
<td>6 years</td>
<td>23</td>
<td>Imbalance, weakness, blurred vision, slurred speech, myokymia, in-coordination of hands</td>
<td>Startle, fever, food, smell, alcohol, caffeine, stress, sudden movement, exercise</td>
<td>Daily</td>
<td>Secs to 3 mins</td>
<td>No</td>
<td>Ineffective (400mg)</td>
<td></td>
</tr>
<tr>
<td>B IV 2* twin</td>
<td>1 years</td>
<td>23</td>
<td>Imbalance, weakness, blurred vision, slurred speech, myokymia, in-coordination of hands, vertigo, headache, nausea</td>
<td>Alcohol, caffeine, stress exercise</td>
<td>Weekly</td>
<td>Secs to 10 mins</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>B IV 3*</td>
<td>8 years</td>
<td>21</td>
<td>Imbalance, weakness, blurred vision, slurred speech, in-coordination of hands</td>
<td>Startle, fever, food, caffeine, stress, sudden movement, menstruation</td>
<td>Daily</td>
<td>Secs to 3 mins</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Clinical summary of patients. Asterisks denote patients examined for the study.
References

Figure Legends

Figure 1: Families A and B. **A:** Pedigrees of families. Filled boxes represent affected individuals. Arrow denotes proband. Left panel family A, right panel, family B. **B:** Electropherogram showing T to C transversion at nucleotide 1241. Upper panel, proband; lower panel, control. **C:** Family C. Filled boxes represent affected individuals. Arrow denotes proband. **D:** Electropherogram showing T to C transversion at nucleotide 919. Upper panel proband, lower panel, control. **E:** Conservation of F414 in *KCNA1*. Arrow denotes mutation position, yellow box represents S6 segment. **F:** Conservation of R307 in *KCNA1*. Arrow denotes mutation position, yellow box represents S4 segment, bold shows positively charge voltage-sensor residues.

Figure 2: Electrophysiological characterization of R307C and F414S KV1.1. **A:** Voltage protocol and current traces obtained from representative HEK cells expressing WT, homomeric mutant (R307C and F414S) and WT coexpressed with mutants (WT:R307C and WT:F414S). **B:** Maximum tail current density (± s.e.m.) measured at +60mV in low intracellular potassium solutions (see methods). **C:** Normalized voltage dependence of activation (± s.e.m) for cells expressing WT, WT: R307C and WT: F414S. Tail currents were sampled 1ms after return to -80 mV. For all cells, n=7.

Table 1: Clinical summary of patients. Asterisks denote patients examined for the study.

Supplementary material:

E-Methods
Figure E-1
Figure E-2
E-Video
E-Video Legend
Figure 2

A

-80mV

WT

R307C

F414S

B

Peak current density (pA/pF)

C

Normalized tail current

V_m (mV)